If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24x-5760=0
a = 3; b = -24; c = -5760;
Δ = b2-4ac
Δ = -242-4·3·(-5760)
Δ = 69696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{69696}=264$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-264}{2*3}=\frac{-240}{6} =-40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+264}{2*3}=\frac{288}{6} =48 $
| 5x=(x^2-8) | | 920=19x+95 | | 14(3-7x)=(-9+2x) | | x+33/7=5 | | F(x)=6x/2x+1 | | 3x+4=8x−28=180 | | 2/3(x+7)=-6 | | s/5+125-125=2,225-125 | | 5y-17=10 | | 1/2y-2=1/5y | | 3/4(x-18)=31.50 | | (3*25)-8=4y+7 | | 2/3=y/15 | | 245=5w+5w+w+w | | (8x-16)+(6x+20)=180 | | 8=2x+48=2x+4 | | 5b=98 | | 6x+4=-5x+4+9x | | x91=18 | | 3.5n+2.5n=180 | | -25(x-4)= | | 2b−6=-4 | | 4x-13=-2x=9 | | 3(n+8)+n=108 | | 5=17−d | | (5)^2+y^2=25 | | (1)^2+y^2=25 | | (4)^2+y^2=25 | | 5n-5+4n+5=180 | | .9x+81=23x-87 | | 4g-37=35 | | (3)^2+y^2=25 |